Abstract
DNA gyrase is an essential DNA topoisomerase that exists only in bacteria. Since novobiocin was withdrawn from the market, new scaffolds and new mechanistic GyrB inhibitors are urgently needed. In this study, we employed fragment screening and X-ray crystallography to identify new building blocks, as well as their binding mechanisms, to support the discovery of new GyrB inhibitors. In total, 84 of the 618 chemical fragments were shown to either thermally stabilize the ATPase domain of Escherichia coli GyrB or inhibit the ATPase activity of E. coli gyrase. Among them, the IC50 values of fragments 10 and 23 were determined to be 605.3 μM and 446.2 μM, respectively. Cocrystal structures of the GyrB ATPase domain with twelve fragment hits were successfully determined at a high resolution. All twelve fragments were deeply inserted in the pocket and formed H-bonds with Asp73 and Thr165, and six fragments formed an additional H-bond with the backbone oxygen of Val71. Fragment screening further highlighted the capability of Asp73, Thr165 and Val71 to bind chemicals and provided diverse building blocks for the design of GyrB inhibitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.