Abstract
The antimicrobial and proinflammatory neutrophil granule protein cathepsin G (CaG) has been reported as a chemoattractant for human phagocytic leukocytes by using a putative G protein coupled receptor. In an effort to identify potential CaG receptor(s), we found that CaG-induced phagocyte migration was specifically attenuated by the bacterial chemotactic peptide fMLP, suggesting these two chemoattractants might share a receptor. In fact, CaG chemoattracts rat basophilic leukemia cells (RBL cells) expressing the high affinity human fMLP receptor FPR, but not parental RBL cells or cells transfected with other chemoattractant receptors. In addition, a specific FPR Ab and a defined FPR antagonist, cyclosporin H, abolished the chemotactic response of phagocytes and FPR-transfected cells to CaG. Furthermore, CaG down-regulated the cell surface expression of FPR in association with receptor internalization. Unlike fMLP, CaG did not induce potent Ca(2+) flux and was a relatively weaker activator of MAPKs through FPR. Yet CaG activated an atypical protein kinase C isozyme, protein kinase Czeta, which was essential for FPR to mediate the chemotactic activity of CaG. Thus, our studies identify CaG as a novel, host-derived chemotactic agonist for FPR and expand the functional scope of this receptor in inflammatory and immune responses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.