Abstract

Neutrophil extracellular traps (NETs), composed of cell-free DNA (cfDNA) and proteins like histones and neutrophil elastase (NE), are released by neutrophils in response to systemic inflammation or pathogens. Although NETs have previously been shown to augment clot formation and inhibit fibrinolysis in humans and dogs, the role of NETs in cats with cardiogenic arterial thromboembolism (CATE), a life-threatening complication secondary to hypertrophic cardiomyopathy, is unknown. A standardized method to identify and quantify NETs in cardiogenic arterial thrombi in cats will advance our understanding of their pathological role in CATE. Here, we describe a technique to identify NETs in formaldehyde-fixed and paraffin-embedded thrombi within the aortic bifurcation, extracted during necropsy. Following deparaffinization with xylene, aortic sections underwent indirect heat-induced antigen retrieval. Sections were then blocked, permeabilized, and ex vivo NETs were identified by colocalization of cell-free DNA (cfDNA), citrullinated histone H3 (citH3), and neutrophil elastase (NE) using immunofluorescence microscopy. To optimize the immunodetection of NETs in thrombi, autofluorescence of tissue elements was limited by using an autofluorescence quenching process prior to microscopy. This technique could be a useful tool to study NETs and thrombosis in other species and offers new insights into the pathophysiology of this complex condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.