Abstract

Mouse monoclonal antibody (mAb) L6 identifies an antigen expressed on the cell surface of many different human carcinomas. While studying the binding activity of mAb L6 to intracerebral tumor xenografts of human lung carcinoma LX-1 cells in nude rats using immunohistological techniques, we observed that L6 can also bind to a cytoplasmic antigen expressed in the magnocellular component of the hypothalamo-neurohypophysial system. Double-labeling experiments with antisera to vasopressin and oxytocin confirmed the localization of L6 immunoreactivity within both peptide-containing cell groups. L6 immunoreactivity in Brattleboro rats (with genetic deletion in the vasopressin gene) was exclusively localized within oxytocin neurons. Oxytocin and vasopressin failed to block L6 staining which suggested that its target epitope resides within the neurophysin sequence, and this explanation was supported by the finding that adsorption of L6 with porcine neurophysin completely eliminated hypothalamic immunoreactivity. Western blot analysis of bovine neurophysin and human pituitary extracts identified L6-immunoreactive bands which corresponded to the position of neurophysin and pro-pressophysin, confirming that L6 immunoreactivity in hypothalamus is related to neurophysin. Thus, monoclonal antibody L6, which is highly reactive with a membrane antigen of human lung cancer cell line LX-1, recognizes a cytoplasmic epitope in hypothalamic neurons identified as neurophysin by immunohistochemistry and Western analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.