Abstract
BackgroundGlucose is the preferred carbon and energy source for Bacillus subtilis and Escherichia coli. A complex regulatory network coordinates gene expression, transport and enzymatic activities, in response to the presence of this sugar. We present a comparison of the cellular response to glucose in these two model organisms, using an approach combining global transcriptome and regulatory network analyses.ResultsTranscriptome data from strains grown in Luria-Bertani medium (LB) or LB+glucose (LB+G) were analyzed, in order to identify differentially transcribed genes in B. subtilis. We detected 503 genes in B. subtilis that change their relative transcript levels in the presence of glucose. A similar previous study identified 380 genes in E. coli, which respond to glucose. Catabolic repression was detected in the case of transport and metabolic interconversion activities for both bacteria in LB+G. We detected an increased capacity for de novo synthesis of nucleotides, amino acids and proteins. A comparison between orthologous genes revealed that global regulatory functions such as transcription, translation, replication and genes relating to the central carbon metabolism, presented similar changes in their levels of expression. An analysis of the regulatory network of a subset of genes in both organisms revealed that the set of regulatory proteins responsible for similar physiological responses observed in the transcriptome analysis are not orthologous. An example of this observation is that of transcription factors mediating catabolic repression for most of the genes that displayed reduced transcript levels in the case of both organisms. In terms of topological functional units in both these bacteria, we found interconnected modules that cluster together genes relating to heat shock, respiratory functions, carbon and peroxide metabolism. Interestingly, B. subtilis functions not found in E. coli, such as sporulation and competence were shown to be interconnected, forming modules subject to catabolic repression at the level of transcription.ConclusionOur results demonstrate that the response to glucose is partially conserved in model organisms E. coli and B. subtilis, including genes encoding basic functions such as transcription, translation, replication and genes involved in the central carbon metabolism.
Highlights
Glucose is the preferred carbon and energy source for Bacillus subtilis and Escherichia coli
Our results demonstrate that the response to glucose is partially conserved in model organisms E. coli and B. subtilis, including genes encoding basic functions such as transcription, translation, replication and genes involved in the central carbon metabolism
We present the genes with known functions, where transcription was found to consist of a response to the presence of glucose in Luria-Bertani medium (LB) medium (LB+G)
Summary
Glucose is the preferred carbon and energy source for Bacillus subtilis and Escherichia coli. We present a comparison of the cellular response to glucose in these two model organisms, using an approach combining global transcriptome and regulatory network analyses. A network based approach for the representation of cellular component interactions has proven highly successful, when applied to the study of genetic expression regulation and the mechanics of cellular metabolism [1]. This approach permits the identification of the effects caused by interactions among proteins and other cellular components; for the first time presenting the possibility of visualizing the cell as a system. The CRE DNA sequences are recognized by the catabolite control protein A (CcpA), whose repressed gene encoding functions relate to the utilization of alternative carbon sources and other stress conditions, in the presence of a preferential carbon source, such as glucose [8,9]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.