Abstract

Genome-wide sequencing technologies have greatly contributed to our understanding of the genetic basis of neurodevelopmental disorders such as autism spectrum disorder (ASD). Interestingly, a number of ASD-related genes express natural antisense transcripts (NATs). In some cases, these NATs have been shown to play a regulatory role in sense strand gene expression and thus contribute to brain function. However, a detailed study examining the transcriptional relationship between ASD-related genes and their NAT partners is lacking. We performed strand-specific, deep RNA sequencing to profile expression of sense and antisense reads with a focus on 100 ASD-related genes in medial prefrontal cortex (mPFC) and striatum across mouse post-natal development (P7, P14, and P56). Using de novo transcriptome assembly, we generated a comprehensive long non-coding RNA (lncRNA) transcriptome. We conducted BLAST analyses to compare the resultant transcripts with the human genome and identified transcripts with high sequence similarity and coverage. We assembled 32861 de novo antisense transcripts mapped to 12182 genes, of which 1018 are annotated by Ensembl as lncRNA. We validated the expression of a subset of selected ASD-related transcripts by PCR, including Syngap1 and Cntnap2. Our analyses revealed that more than 70% (72/100) of the examined ASD-related genes have one or more expressed antisense transcripts, suggesting more ASD-related genes than previously thought could be subject to NAT-mediated regulation in mice. We found that expression levels of antisense contigs were mostly positively correlated with their cognate coding sense strand RNA transcripts across developmental age. A small fraction of the examined transcripts showed brain region specific enrichment, indicating possible circuit-specific roles. Our BLAST analyses identified 110 of 271 ASD-related de novo transcripts with >90% identity to the human genome at >90% coverage. These findings, which include an assembled de novo antisense transcriptome, contribute to the understanding of NAT regulation of ASD-related genes in mice and can guide NAT-mediated gene regulation strategies in preclinical investigations toward the ultimate goal of developing novel therapeutic targets for ASD.

Highlights

  • Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that manifests itself in early childhood with social interaction deficits, impaired communication and behavioral disturbances such as stereotypy and excess repetition (American Psychiatric Association, and American Psychiatric Association DSM-5 Task Force, 2013)

  • A subset of the ASD-related genes are differentially expressed between medial prefrontal cortex (mPFC) and striatum: Mef2c, Satb2, Prss12, Kras, Nfix, Shank2, Dmd, Syn1, Nrxn1, Acsl4, Aff2, Pcdh19, Cacna1f, Syngap1, Iqsec2, and Gria3 are enriched in mPFC; Foxp1, Ap1s2, Gamt, Tbx1, Chd7, and Nhs are enriched in striatum (Figure 2C)

  • Our comprehensive study demonstrates that ASD-related antisense transcripts are differentially regulated in two ASD-associated brain tissues through brain development

Read more

Summary

INTRODUCTION

Autism spectrum disorder (ASD) is a complex neurodevelopmental condition that manifests itself in early childhood with social interaction deficits, impaired communication and behavioral disturbances such as stereotypy and excess repetition (American Psychiatric Association, and American Psychiatric Association DSM-5 Task Force, 2013). While pathological changes in medial prefrontal cortex (mPFC) function likely contribute to impaired social behavior and communication, striatal circuit deficits likely underlie the repetitive and stereotypical behaviors (Fuccillo, 2016). The postnatal timepoints (P7, P14, and P56) we chose in this study were intended to span early postnatal cortical development, through periods of synaptic pruning and into adulthood These timepoints have been focus in mouse brain development research allowing comparison to historical data (Thompson et al, 2014). Using this RNA sequencing data, we built a de novo antisense transcriptome and used this to identify antisense transcripts in mouse that are highly similar to the human genome. The information provided here can guide efforts to test NATmediated regulation of ASD-related genes

MATERIALS AND METHODS
RESULTS
A Subset of ASD-Related Contigs Is Highly Similar to Human
DISCUSSION
LIMITATIONS
CONCLUSION
ETHICS STATEMENT
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call