Abstract

The current study explored the Na+/K+-ATPase (NKA) inhibition-independent proarrhythmic mechanisms of cardiac glycosides (CGs) which are well-known NKA inhibitors. With the cytosolic Ca2+ chelated by EGTA and BAPTA or extracellular Ca2+ replaced by Ba2+, effects of bufadienolides (bufalin (BF) and cinobufagin (CBG)) and cardenolides (ouabain (Oua) and pecilocerin A (PEA)) on the L-type calcium current (ICa,L) were recorded in heterologous expression Cav1.2-CHO cells and human embryonic stem cell-derived cardiomyocytes (hESC-CMs). BF and CBG demonstrated a concentration-dependent (0.1 to 100 µM) ICa,L inhibition (maximal ≥50%) without and with the NKA activity blocked by 10 µM Oua. BF significantly shortened the action potential duration at 1.0 µM and shortened the extracellular field potential duration at 0.01~1.0 µM. On the other hand, BF and CBG at 100 µM demonstrated a strong inhibition (≥40%) of the rapidly activating component of the delayed rectifier K+ current (IKr) in heterologous expression HEK293 cells and prolonged the APD of the heart of day-3 Zebrafish larva with disrupted rhythmic contractions. Moreover, hESC-CMs treated with BF (10 nM) for 24 hours showed moderate yet significant prolongation in APD90. In conclusion, our data indicate that CGs particularly bufadienolides possess cytosolic [Ca2+]i- and NKA inhibition- independent proarrhythmic potential through ICa,L and IKr inhibitions.

Highlights

  • (BF) and cinobufagin (CBG)) and cardenolides (ouabain (Oua) and pecilocerin A (PEA)) on the L-type calcium current (ICa,L) were recorded in heterologous expression Cav1.2-CHO cells and human embryonic stem cell-derived cardiomyocytes

  • Based on that used in previous in vitro experiments[5,6,7,8,9] and in patients[10], the concentrations of BF, CBG, Oua and PEA adopted in the current study ranged from 0.1 to 100 μM, whereas 0.01~1.0 μM falls in the therapeutic range and 1.0~10 μM overlapped with the cardiotoxicity range

  • Data from the current study indicate that NKA inhibition-independent ICa,L inhibition could contribute to the greater proarrhythmic effects of BF and CBG compared with Oua and PEA

Read more

Summary

Introduction

(BF) and cinobufagin (CBG)) and cardenolides (ouabain (Oua) and pecilocerin A (PEA)) on the L-type calcium current (ICa,L) were recorded in heterologous expression Cav1.2-CHO cells and human embryonic stem cell-derived cardiomyocytes (hESC-CMs). NKA inhibition causes an accumulation of cytosolic Na+ which in turn activates the reverse-mode of Na+/ Ca2+-exchanger This leads to an increase in cytosolic [Ca2+]i which perturbs the CGs through positive inotropic effect[3,4,5]. CG-induced accumulation of cytosolic [Ca2+]i is known to accelerate [Ca2+]i-dependent inactivation (CDI) of the L-type Calcium channels (LTCC) and lead to the suppression of the LTCC currents (ICa,L)[11, 12], which could be responsible for the shortening of cardiac action potential (AP) duration (APD) in cardiac myocytes of various animal species[11, 13,14,15,16] and the shortening of the cardiac field potential (FP) duration of human induced pluripotent stem cell-derived cardiomyocytes[17]. Chan Su (toad venom) and its key ingredient BF have demonstrated more potent cardiotoxicity over Oua as additional proarrhythmic effects were achieved by Chan Su or BF after the Na+/K+-ATPase activity was fully blocked by Oua[20, 22]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.