Abstract

The Na(+)-K(+)-ATPase is a heterodimeric plasma membrane protein that consists of a catalytic alpha-subunit and a smaller glycosylated beta-subunit that has not been fully characterized in alveolar epithelial cells (AEC) to date. In this study, we identified the Na(+)-K(+)-ATPase beta-subunit protein in rat AEC and lung membranes using immunochemical techniques. Rat AEC grown in primary culture and rat lung, brain, and kidney membranes were solubilized in either 2% sodium dodecyl sulfate (SDS) sample buffer for SDS-polyacrylamide gel electrophoresis or in 1% Nonidet P-40 lysis buffer for immunoprecipitation studies. Na(+)-K(+)-ATPase beta-subunit was not detected in either AEC or lung membranes on Western blots when probed with a panel of antibodies (Ab) against beta-subunit isoforms, whereas brain and kidney beta-subunit were recognized as broad approximately 50-kDa bands. AEC, lung, and kidney membranes were immunoprecipitated with anti-beta Ab IEC 1/48, a monoclonal Ab that recognizes beta-subunit protein only in its undenatured state. The beta-subunit was detected in the immunoprecipitate (IP) from kidney membranes by several different anti-beta-subunit Ab. The beta-subunit was faintly detectable from AEC and lung IP as a broad approximately 50-kDa band when blotted with the polyclonal anti-beta 1-subunit Ab SpET but could not be detected by blotting with other anti-beta Ab. Treatment of the IP from kidney, lung, and AEC with N-glycosidase F for 2 h at 37 degrees C resulted in immunodetection of identical approximately 35 kDa bands when probed with all anti-beta 1 Ab on Western blots. From these results, we conclude that rat lung and AEC possess immunoreactive beta-subunit protein that is only readily detectable after deglycosylation. Because anti-beta Ab fail to detect the Na(+)-K(+)-ATPase beta-subunit in rat lung or AEC by standard Western blotting techniques under the conditions of these experiments, our results suggest that lung beta-subunit may be glycosylated differently from kidney and other tissues. These differences appear to be due to organ- or cell-specific posttranslational processing of the beta 1-subunit and may result in altered regulation of sodium pumps in lung compared with other epithelia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.