Abstract

Retinoic acid receptor-related orphan receptors (RORs) are ligand-dependent transcriptional factors and members of the nuclear receptor superfamily. RORs regulate inflammation, metabolic disorders and circadian rhythm. RORγ is a promising therapeutic drug target for treating Th17-mediated autoimmune diseases. In our study, we performed structure-based virtual screening and ligand-based virtual screening targeting the RORγ ligand-binding domain and successfully identified N-phenyl-2-(N-phenylphenylsulfonamido) acetamides as a type of RORγ inverse agonist. Among the 28 purchased compounds, C11 was confirmed to be active with micromolar IC50 values in both an AlphaScreen assay (62.58 μM) and a cell-based reporter gene assay (4.54 μM). Structure-guided optimization of the compound C11 led to the identification of compound 39, which significantly enhanced RORγ inhibition with an IC50 value of 630 nM. The RORγ antagonism of 39 was 7-fold higher than that of hit compound C11. These results represent a promising starting point for developing potent small molecule RORγ inverse agonists for the treatment of autoimmune diseases, such as rheumatoid arthritis, psoriasis, and multiple sclerosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.