Abstract

Different strategies have been used to mitigate greenhouse gas emissions from domesticated ruminants, including the removal of protozoa (defaunation). The objective of the present work was to analyze the potential of different N-oxide-containing aromatic heterocycles with known antiprotozoal activity as rumen-gas-abating agents. Nineteen pure compounds, belonging to seven different N-oxide chemotypes from our chemo-library were studied together with monensin in an in vitro rumen simulation assay. Fermentation profiles, i.e., gas production, pH, and short carboxylic acid concentrations, were compared to an untreated control at 96 h post inoculation. In our study, we investigated whole-ruminal fluid, with and without compound treatments, by NMR spectroscopy focusing on concentrations of the metabolites acetate, propionate, butyrate, and lactate. From data analysis, three of the compounds from different N-oxide chemotypes, including quinoxaline dioxide, benzofuroxan, and methylfuroxan, were able to diminish the production of gases such as monensin with similar gas production lag times for each of them. Additionally, unlike monensin, one methylfuroxan did not decrease the rumen pH during the analyzed incubation time, shifting rumen fermentation to increase the molar concentrations of propionate and butyrate. These facts suggest interesting alternatives as feed supplements to control gas emissions from dairy ruminants.

Highlights

  • Ruminants, during enteric fermentation, degrade plant polysaccharides to acetate (Ac), propionate (Prop), butyrate (But), CO2, and CH4 via the anaerobic microorganism community in the rumen [1].The eructated greenhouse gases CO2, CH4, and H2 S contribute to global warming [2,3]

  • Among the most relevant biological activities, we have found anti-protozoa activity in phenazine dioxide [19], quinoxaline dioxide [20], indazole

  • Taking the above facts into account and with the lack of studies about the use of N-oxides as rumen fermentation modifiers, the purpose of this work was to study the effects of compounds belonging to seven N-oxide chemotypes on in vitro rumen fermentation

Read more

Summary

Introduction

Ruminants, during enteric fermentation, degrade plant polysaccharides to acetate (Ac), propionate (Prop), butyrate (But), CO2, and CH4 via the anaerobic microorganism community in the rumen [1]. The eructated greenhouse gases CO2 , CH4 , and H2 S contribute to global warming [2,3]. Eructated CH4 represents an energy loss to the animals, which can be between 2% and 15% of their gross energy intake [4,5]. The principal methanogens in cattle, belonging to the domain Archaea and the phylum Euryarchaeota, use H2 and CO2 to generate CH4. Methanogens have symbiotic relationships with rumen microorganisms, especially with ruminal protozoa, which involve interspecies hydrogen transfer. Protozoa from the genera Entodinium, Polyplastron, Epidinium, and Ophryoscolex have been

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.