Abstract

The N–H related acceptor defects in GaAsN grown by chemical beam epitaxy (CBE) are studied by hydrogen isotopes, H and D. When the films are grown by a conventional arsenic source, deep level transient spectroscopy (DLTS) reveals two energy levels at 0.11 and 0.19 eV above the valence band. These levels were considered to act as a double acceptor in the literature. When the films are grown by a deuterated arsenic source, new signals appear in DLTS spectra at 0.15 and 0.23 eV. This indicates that the new signals are originated from D-related defects. The energy differences between 0.15 and 0.11 eV, and that between 0.23 and 0.19 eV are same (0.04 eV). Although these energy levels become deeper with increasing the growth temperature, the energy differences are almost constant independent of the growth condition. In addition, the intensity ratios of the peaks at 0.15 (0.23) eV to that at 0.11 (0.19) eV have a good correlation with the isotopic concentration ratio of D to H in the grown films. Therefore, we conclude that the energy differences and intensity ratios of the DLTS peaks occur due to the structural change from N–H to N−D in the same type of defect, and that this acceptor is an N–H related defect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.