Abstract

Three sites of N(G),N(G)-arginine methylation have been located at residues 205, 217, and 224 in the glycine-rich, COOH-terminal one-third of the HeLa A1 heterogeneous ribonucleoprotein. Together with the previously determined dimethylated arginine at position 193 [Williams et al., (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 5666-5670], it is evident that all four sites fall within a span of sequence between residues 190 and 233 that contains multiple Arg-Gly-(Gly) sequences interspersed with phenylalanine residues. These RGG boxes have been postulated to represent an RNA binding motif [Kiledjian and Dreyfuss (1992) EMBO J. 11, 2655-2664]. Dimethylation of HeLa A1 appears to be quantitative at each of the four positions. Arginines 205 and 224 have been methylated in vitro by a nuclear protein arginine methyltransferase using recombinant (unmethylated) A1 as substrate. This suggests A1 may be an in vivo substrate for this enzyme. Examination of sequences surrounding the sites of methylation in A1 along with a compilation from the literature of sites that have been identified in other nuclear RNA binding proteins suggests a methylase-preferred recognition sequence of Phe/Gly-Gly-Gly-Arg-Gly-Gly-Gly/Phe, with the COOH-terminal flanking glycine being obligatory. Taken together with data in the literature, identification of the sites of A1 arginine methylation strongly suggests a role for this modification in modulating the interaction of A1 with nucleic acids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.