Abstract

MYC pre-mRNA is spliced with high fidelity to produce the transcription factor known to regulate cellular differentiation, proliferation, apoptosis, and alternative splicing. The mechanisms underpinning the pre-mRNA splicing of MYC, however, remain mostly unexplored. In this study, we examined the interaction of heterogeneous nuclear ribonucleoprotein C (HNRNPC) with MYC intron 2. Building off published eCLIP studies, we confirmed this interaction with poly(U) regions in intron 2 of MYC and found that full binding is correlated with optimal protein production. The interaction appears to be compensatory, as mutational disruption of all three poly(U) regions was required to reduce both HNRNPC binding capacity and fidelity of either splicing or translation. Poly(U) sequences in MYC intron 2 were relatively conserved across sequences from several different species. Lastly, we identified a short sequence just upstream of an HNRNPC binding region that when removed enhances MYC translation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.