Abstract
The tea tree (Melaleuca alternifolia) is renowned for its production of tea tree oil, an essential oil primarily composed of terpenes extracted from its shoot. MYB transcription factors, which are one of the largest TF families, play a crucial role in regulating primary and secondary metabolite synthesis. However, knowledge of the MYB gene family in M. alternifolia is limited. Here, we conducted a comprehensive genome-wide analysis of MYB genes in M. alternifolia, referred to as MaMYBs, including phylogenetic relationships, structures, promoter regions, and GO annotations. Our findings classified 219 MaMYBs into four subfamilies: one 5R-MYB, four 3R-MYBs, sixty-one MYB-related, and the remaining 153 are all 2R-MYBs. Seven genes (MYB189, MYB146, MYB44, MYB29, MYB175, MYB162, and MYB160) were linked to terpenoid synthesis based on GO annotation. Phylogenetic analysis with Arabidopsis homologous MYB genes suggested that MYB193 and MYB163 may also be involved in terpenoid synthesis. Additionally, through correlation analysis of gene expression and metabolite content, we identified 42 MYB genes associated with metabolite content. The results provide valuable insights into the importance of MYB transcription factors in essential oil production in M. alternifolia. These findings lay the groundwork for a better understanding of the MYB regulatory network and the development of novel strategies to enhance essential oil synthesis in M. alternifolia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.