Abstract

BackgroundMacrocephaly, which is defined as a head circumference greater than or equal to + 2 standard deviations, is a feature commonly observed in children with developmental delay and/or autism spectrum disorder. Although PTEN is a well-known gene identified in patients with this syndromic presentation, other genes in the PI3K-AKT-mTOR signalling pathway have also recently been suggested to have important roles. The aim of this study is to characterise the mutation spectrum of this group of patients.MethodsWe performed whole-exome sequencing of 21 patients with macrocephaly and developmental delay/autism spectrum disorder. Sources of genomic DNA included blood, buccal mucosa and saliva. Germline mutations were validated by Sanger sequencing, whereas somatic mutations were validated by droplet digital PCR.ResultsWe identified ten pathogenic/likely pathogenic mutations in PTEN (n = 4), PIK3CA (n = 3), MTOR (n = 1) and PPP2R5D (n = 2) in ten patients. An additional PTEN mutation, which was classified as variant of unknown significance, was identified in a patient with a pathogenic PTEN mutation, making him harbour bi-allelic germline PTEN mutations. Two patients harboured somatic PIK3CA mutations, and the level of somatic mosaicism in blood DNA was low. Patients who tested positive for mutations in the PI3K-AKT-mTOR pathway had a lower developmental quotient than the rest of the cohort (DQ = 62.8 vs. 76.1, p = 0.021). Their dysmorphic features were non-specific, except for macrocephaly. Among the ten patients with identified mutations, brain magnetic resonance imaging was performed in nine, all of whom showed megalencephaly.ConclusionWe identified mutations in the PI3K-AKT-mTOR signalling pathway in nearly half of our patients with macrocephaly and developmental delay/autism spectrum disorder. These patients have subtle dysmorphic features and mild developmental issues. Clinically, patients with germline mutations are difficult to distinguish from patients with somatic mutations, and therefore, sequencing of buccal or saliva DNA is important to identify somatic mosaicism. Given the high diagnostic yield and the management implications, we suggest implementing comprehensive genetic testing in the PI3K-AKT-mTOR pathway in the clinical evaluation of patients with macrocephaly and developmental delay and/or autism spectrum disorder.

Highlights

  • Which is defined as a head circumference greater than or equal to + 2 standard deviations, is a feature commonly observed in children with developmental delay and/or autism spectrum disorder

  • Prior to whole-exome sequencing (WES), the chromosomal microarray was performed on these patients, as described previously [34], and no pathogenic/likely pathogenic copy number variations were identified in these patients

  • All pathogenic mutations were located in genes involved in the PI3K-AKT-mTOR signalling pathway, including PTEN (n = 4), PIK3CA (n = 3), MTOR (n = 1) and PPP2R5D (n = 2)

Read more

Summary

Introduction

Which is defined as a head circumference greater than or equal to + 2 standard deviations, is a feature commonly observed in children with developmental delay and/or autism spectrum disorder. The aim of this study is to characterise the mutation spectrum of this group of patients. Megalencephaly is defined as hyperplasia of the brain parenchyma observed in a radiological examination together with clinical features of macrocephaly. Both conditions are associated with developmental delay (DD) and/or autism spectrum disorder (ASD). Previous studies have reported a genetic diagnosis in 10% to 40% of patients with ASD [8,9,10,11]. According to the American Academy of Pediatrics guidelines for ASD published in 2000, genetic testing is a standard diagnostic test for children with ASD and dysmorphic features or intellectual disability (ID)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call