Abstract

Charge variants, especially acidic charge variants, of recombinant monoclonal antibodies are the major critical quality attributes in the biotechnology industry due to their potential influence on stability and biological activity. The chemical properties of the acidic charge variants have been challenging to fully characterize, and it is critical for process development and optimization. To completely understand the multiple sources of acidic charge variants, the major charge forms of an IgG1 monoclonal antibody were firstly isolated and then analyzed by a battery of characterization tools. It was found that various degrees of disulfidebond reduction, the deamination of HC-T8 Asn84 and HC-T35 Asn388 and aggregation account for the majority of acidic charge heterogeneity and the terminal galactosylation content was in relation to the acidic charge heterogeneity. The correlation between acidic charge heterogeneity and galactosylation content was further explored by weak cation exchange chromatography with the use of β1-4 galactosidase digestion. The results showed that galactosylation was not the source of the acidic charge variants per se. Meanwhile, to gain insights into the impact on binding affinity of monoclonal antibody to IgE and FcRn, charge variants were also analyzed by competitive ELISA and surface plasmon resonance, respectively. All isolated charge variants had similar affinity binding to IgE and FcRn binding relative to the starting material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call