Abstract

In order to model complex industrial processes, this work studies the identification of linear parameter varying (LPV) models with two scheduling variables. The LPV model is parameterized as blended linear models, which is also called multi-model structure. Several weighting functions, linear, polynomial and Gaussian functions, are used and compared. The usefulness of the method is tested using a high purity distillation column model in a case study. The case study shows that a good fit of identification data is not enough to verify model quality and can even be misleading in nonlinear process identification; other measures related to process knowledge should be used in model validation. The case study also shows that commonly used LPV model based on parameter interpolation can fail for the high purity distillation column. Finally, several pitfalls in nonlinear process identification are pointed out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.