Abstract

NAD(P)-linked aldehyde dehydrogenases catalyze the oxidation of a wide variety of aldehydes. Thirteen of these enzymes have been identified in mouse tissues; eleven are found in the liver. Some are substrate-nonspecific; others are relatively substrate-specific. The present investigation sought to determine which of these enzymes are operative in catalyzing the oxidation of retinaldehyde to retinoic acid, a metabolite of vitamin A that promotes the differentiation of epithelial and other cells. Spectrophotometric and HPLC assays were used for this purpose. Enzyme-catalyzed oxidation of retinaldehyde (25 μM) was restricted to the cytosol (105,000g supernatant fraction) and occurred at a rate of 211 nmol/min/g liver; oxidation of acetaldehyde (4 mM) by this fraction proceeds about ten times faster. At least 90% of this activity was NAD dependent. Of the approximately 10% that was apparently NAD independent, two-thirds was inhibited by 1 mM pyridoxal, a known inhibitor of aldehyde oxidase. Of the six cytosolic aldehyde dehydrogenases, only two, viz. AHD-2 and AHD-7, catalyzed the oxidation of retinaldehyde to retinoic acid. An additional NAD-dependent enzyme, viz. xanthine oxidase (dehydrogenase form), also catalyzed the reaction. Catalysis by AHD-2 accounted for more than 90% of the total NAD-dependent activity. K m values were 0.7, 0.6 and 0.9 μM, respectively, for the AHD-2-, AHD-7- and xanthine oxidase (dehydrogenase form)-catalyzed reaction. AHD-4, an aldehyde dehydrogenase found in the cytosol of mouse stomach epithelium and cornea, did not catalyze the reaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.