Abstract

BackgroundClinical characterization of motion in patients with Parkinson disease (PD) is challenging: symptom progression, suitability of medication, and level of independence in the home environment can vary across time and patients. Appointments at the neurological outpatient clinic provide a limited understanding of the overall situation. In order to follow up these variations, longer-term measurements performed outside of the clinic setting could help optimize and personalize therapies. Several wearable sensors have been used to estimate the severity of symptoms in PD; however, longitudinal recordings, even for a short duration of a few days, are rare. Home recordings have the potential benefit of providing a more thorough and objective follow-up of the disease while providing more information about the possible need to change medications or consider invasive treatments.ObjectiveThe primary objective of this study is to collect a dataset for developing methods to detect PD-related symptoms that are visible in walking patterns at home. The movement data are collected continuously and remotely at home during the normal lives of patients with PD as well as controls. The secondary objective is to use the dataset to study whether the registered medication intakes can be identified from the collected movement data by looking for and analyzing short-term changes in walking patterns.MethodsThis paper described the protocol for an observational case-control study that measures activity using three different devices: (1) a smartphone with a built-in accelerometer, gyroscope, and phone orientation sensor, (2) a Movesense smart sensor to measure movement data from the wrist, and (3) a Forciot smart insole to measure the forces applied on the feet. The measurements are first collected during the appointment at the clinic conducted by a trained clinical physiotherapist. Subsequently, the subjects wear the smartphone at home for 3 consecutive days. Wrist and insole sensors are not used in the home recordings.ResultsData collection began in March 2018. Subject recruitment and data collection will continue in spring 2019. The intended sample size was 150 subjects. In 2018, we collected a sample of 103 subjects, 66 of whom were diagnosed with PD.ConclusionsThis study aims to produce an extensive movement-sensor dataset recorded from patients with PD in various phases of the disease as well as from a group of control subjects for effective and impactful comparison studies. The study also aims to develop data analysis methods to monitor PD symptoms and the effects of medication intake during normal life and outside of the clinic setting. Further applications of these methods may include using them as tools for health care professionals to monitor PD remotely and applying them to other movement disorders.Trial RegistrationClinicalTrials.gov NCT03366558; https://clinicaltrials.gov/ct2/show/NCT03366558 International Registered Report Identifier (IRRID)DERR1-10.2196/12808

Highlights

  • Parkinson disease (PD) is a progressive and degenerative disorder of the central nervous system, affecting both the physical and psychological health of the patient [1]

  • In 2018, we collected a sample of 103 subjects, 66 of whom were diagnosed with PD

  • This study aims to produce an extensive movement-sensor dataset recorded from patients with PD in various phases of the disease as well as from a group of control subjects for effective and impactful comparison studies

Read more

Summary

Introduction

Parkinson disease (PD) is a progressive and degenerative disorder of the central nervous system, affecting both the physical and psychological health of the patient [1]. Rigidity, and bradykinesia (ie, the slowness of movement) are considered the main motor indicators of PD [1]. In addition to these motor symptoms, PD may affect the cognitive ability by causing dementia and indirectly affecting the mental health by increasing the risk of depression [1]. The symptoms can be identified visually, wearable sensors provide the possibility to monitor the patient remotely and collect more quantifiable data of the progression of symptoms. Home recordings have the potential benefit of providing a more thorough and objective follow-up of the disease while providing more information about the possible need to change medications or consider invasive treatments

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.