Abstract

Simple SummaryThe clinical treatment of acute myeloid leukaemia is still dominated by chemotherapy. Clinically used anti-leukaemia drugs have shortcomings such as myelosuppression, toxicity and drug resistance. Therefore, the need to develop other chemotherapeutic drugs to meet more clinical needs is urgent. Ribonucleotide reductase (RNR) consists of a catalytic large subunit M1 (RRM1) and a regulatory small subunit M2 (RRM2), which provides dNTPs for DNA synthesis. The rapid proliferation of cancer cells requires large amounts of dNTPs. Therefore, the use of RNR inhibitors is a promising strategy for the clinical treatment of various malignancies. Monobenzone is an FDA-approved depigmenting agent for vitiligo patients. In this study, we demonstrate that monobenzone is a potent inhibitor of RNR enzyme activity by targeting RRM2 protein, and thus has significant anti-leukaemia efficacy in vitro and in vivo. This finding suggests that monobenzone has the potential to be optimized as a novel anti-AML therapeutic drug in the future. Acute myeloid leukaemia (AML) is one of the most common types of haematopoietic malignancy. Ribonucleotide reductase (RNR) is a key enzyme required for DNA synthesis and cell proliferation, and its small subunit RRM2 plays a key role for the enzymatic activity. We predicted monobenzone (MB) as a potential RRM2 target compound based on the crystal structure of RRM2. In vitro, MB inhibited recombinant RNR activity (IC50 = 0.25 μM). Microscale thermophoresis indicated that MB inhibited RNR activity by binding to RRM2. MB inhibited cell proliferation (MTT IC50 = 6–18 μM) and caused dose-dependent DNA synthesis inhibition, cell cycle arrest, and apoptosis in AML cells. The cell cycle arrest was reversed by the addition of deoxyribonucleoside triphosphates precursors, suggesting that RNR was the intracellular target of the compound. Moreover, MB overcame drug resistance to the common AML drugs cytarabine and doxorubicin, and treatment with the combination of MB and the Bcl-2 inhibitor ABT-737 exerted a synergistic inhibitory effect. Finally, the nude mice xenografts study indicated that MB administration produced a significant inhibitory effect on AML growth with relatively weak toxicity. Thus, we propose that MB has the potential as a novel anti-AML therapeutic agent in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.