Abstract

Cotton breeding for resistance to root-knot nematode (RKN) [Meloidogyne incognita (Kofoid and White) Chitwood] is hindered by the lack of convenient and reliable screening methods for resistant plants. The identification of molecular markers closely linked to RKN resistance will facilitate the development of RKN resistant cultivars through marker-assisted selection (MAS). Our objective was to identify and develop new DNA markers that are associated with RKN resistance in cotton. Using three pairs of near-isogenic (NIL) resistant (R) and susceptible (S) lines, two AFLP markers, two RAPD markers, and three RGA markers were identified to be polymorphic between the NIL-R and NIL-S lines. One RAPD marker was converted into a sequence-tagged site (STS) marker. In an F2 population of ‘ST 474’ × ‘Auburn 634 RNR’, the two RAPD markers and the STS marker were mapped to the same linkage group containing several markers that were previously reported to be linked with the RKN resistance gene rkn1 on chromosome 11 in ‘Acala NemX’. All these markers were found to be associated with a major RKN resistance gene, presumably Mi2 in the resistant line Auburn 634 RNR, suggesting that rkn1 and Mi2 are either allelic or closely linked. In addition, no susceptible recombinants were found in a resistance screen of 200 F2 plants from the cross Acala NemX × Auburn 634 RNR. The utility of the two RAPD markers and the converted STS marker were evaluated using 23 R and 8 S germplasm lines. The RAPD and STS markers, along with other previously reported markers associated with RKN resistance will be useful in germplasm screening, MAS for RKN resistance, and map-based cloning for RKN resistance genes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.