Abstract

BackgroundMicroRNAs are small noncoding RNAs that play critical roles in regulation of gene expression in wide array of tissues including the ovary through sequence complementarity at post-transcriptional level. Tight regulation of multitude of genes involved in ovarian development and folliculogenesis could be regulated at transcription level by these miRNAs. Therefore, tissue specific miRNAs identification is considered a key step towards understanding the role of miRNAs in biological processes.MethodsTo investigate the role of microRNAs during ovarian development and folliculogenesis we sequenced eight different libraries using Illumina deep sequencing technology. Different developmental stages were selected to explore miRNAs expression pattern at different stages of gonadal maturation with/without treatment of PMSG/hCG for superovulation.ResultsFrom massive sequencing reads, clean reads of 16–26 bp were selected for further analysis of differential expression analysis and novel microRNA annotation. Expression analysis of all miRNAs at different developmental stages showed that some miRNAs were present ubiquitously while others were differentially expressed at different stages. Among differentially expressed miRNAs we reported 61 miRNAs with a fold change of more than 2 at different developmental stages among all libraries. Among the up-regulated miRNAs, mmu-mir-1298 had the highest fold change with 4.025 while mmu-mir-150 was down-regulated more than 3 fold. Furthermore, we found 2659 target genes for 20 differentially expressed microRNAs using seven different target predictions programs (DIANA-mT, miRanda, miRDB, miRWalk, RNAhybrid, PICTAR5, TargetScan). Analysis of the predicted targets showed certain ovary specific genes targeted by single or multiple microRNAs. Furthermore, pathway annotation and Gene ontology showed involvement of these microRNAs in basic cellular process.ConclusionsThese results suggest the presence of different miRNAs at different stages of ovarian development and superovulation. Potential role of these microRNAs was elucidated using bioinformatics tools in regulation of different pathways, biological functions and cellular components underlying ovarian development and superovulation. These results provide a framework for extended analysis of miRNAs and their roles during ovarian development and superovulation. Furthermore, this study provides a base for characterization of individual miRNAs to discover their role in ovarian development and female fertility.Electronic supplementary materialThe online version of this article (doi:10.1186/s13048-015-0170-2) contains supplementary material, which is available to authorized users.

Highlights

  • MicroRNAs are small noncoding RNAs that play critical roles in regulation of gene expression in wide array of tissues including the ovary through sequence complementarity at post-transcriptional level

  • Previous investigations have evaluated miRNA transcriptomes from the reproductive organs in different organisms to decipher their expression profile and have shown their roles in pathology, fertility and development of ovary [14, 16, 20,21,22]. These findings provide valuable information about individual miRNAs differentially expressed in specific type of ovarian cells with/without response to gonadotropic hormones, the number of experimentally validated miRNAs expressed in the ovary is still very limited

  • Sequence analysis of small RNAs in mouse ovary To investigate miRNAs involved in the postnatal development and ovulation of mouse ovary, eight small RNA libraries were constructed by Illumina Hiseq 2000 small RNA deep sequencing technology

Read more

Summary

Introduction

MicroRNAs are small noncoding RNAs that play critical roles in regulation of gene expression in wide array of tissues including the ovary through sequence complementarity at post-transcriptional level. Tight regulation of multitude of genes involved in ovarian development and folliculogenesis could be regulated at transcription level by these miRNAs. tissue specific miRNAs identification is considered a key step towards understanding the role of miRNAs in biological processes. MicroRNAs (miRNAs) belongs to small non-coding RNAs which are of prime importance due to their roles in regulating genes and genomes at different levels such as chromatin structure, chromosome segregation, transcription and RNA processing [5]. Likewise mRNA, microRNA expression shows vibrant changes during the development process as extensive number of genes involved in the process of oogenesis, are influenced by miRNAs [6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call