Abstract

HDV-like self-cleaving ribozymes have been found in a wide variety of organisms, implicated in diverse biological processes, and their activity typically shows a strong divalent metal dependence, but little metal specificity. Recent studies suggested that very short variants of these ribozymes exist in nature, but their distribution and biochemical properties have not been established. To map out the distribution of small HDV-like ribozymes, the drz-Spur-3 sequence was minimized to yield a core construct for structure-based bioinformatic searches. These searches revealed several microbial ribozymes, particularly in the human microbiome. Kinetic profile of the smallest ribozyme revealed two distinct metal binding sites, only one of which promotes fast catalysis. Furthermore, this ribozyme showed markedly reduced activity in Ca(2+), even in the presence of physiological Mg(2+) concentrations. Our study substantially expands the number of microbial HDV-like ribozymes and provides an example of cleavage regulation by divalent metals.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call