Abstract

BackgroundAt present, screening of the population at risk for gambiense human African trypanosomiasis (HAT) is based on detection of antibodies against native variant surface glycoproteins (VSGs) of Trypanosoma brucei (T.b.) gambiense. Drawbacks of these native VSGs include culture of infective T.b. gambiense trypanosomes in laboratory rodents, necessary for production, and the exposure of non-specific epitopes that may cause cross-reactions. We therefore aimed at identifying peptides that mimic epitopes, hence called “mimotopes,” specific to T.b. gambiense VSGs and that may replace the native proteins in antibody detection tests.Methodology/Principal FindingsA Ph.D.-12 peptide phage display library was screened with polyclonal antibodies from patient sera, previously affinity purified on VSG LiTat 1.3 or LiTat 1.5. The peptide sequences were derived from the DNA sequence of the selected phages and synthesised as biotinylated peptides. Respectively, eighteen and twenty different mimotopes were identified for VSG LiTat 1.3 and LiTat 1.5, of which six and five were retained for assessment of their diagnostic performance. Based on alignment of the peptide sequences on the original protein sequence of VSG LiTat 1.3 and 1.5, three additional peptides were synthesised. We evaluated the diagnostic performance of the synthetic peptides in indirect ELISA with 102 sera from HAT patients and 102 endemic negative controls. All mimotopes had areas under the curve (AUCs) of ≥0.85, indicating their diagnostic potential. One peptide corresponding to the VSG LiTat 1.3 protein sequence also had an AUC of ≥0.85, while the peptide based on the sequence of VSG LiTat 1.5 had an AUC of only 0.79.Conclusions/SignificanceWe delivered the proof of principle that mimotopes for T.b. gambiense VSGs, with diagnostic potential, can be selected by phage display using polyclonal human antibodies.

Highlights

  • The chronic form of sleeping sickness or human African trypanosomiasis (HAT) in West and Central Africa is caused by the protozoan parasite Trypanosoma brucei (T.b.) gambiense while T.b. rhodesiense causes a more fulminant, acute form in East and Southern Africa

  • We aim to replace the native variant surface glycoprotein (VSG) parasite antigens that are presently used in most antibody detection tests with peptides that can be synthesised in vitro

  • Antibodies recognising VSG were purified from HAT patient sera and were used to select phage-expressed peptides that mimic VSG epitopes from a Ph.D.-12 phage display library

Read more

Summary

Introduction

The chronic form of sleeping sickness or human African trypanosomiasis (HAT) in West and Central Africa is caused by the protozoan parasite Trypanosoma brucei (T.b.) gambiense while T.b. rhodesiense causes a more fulminant, acute form in East and Southern Africa. At present, screening of the population at risk for gambiense human African trypanosomiasis (HAT) is based on detection of antibodies against native variant surface glycoproteins (VSGs) of Trypanosoma brucei (T.b.) gambiense. Drawbacks of these native VSGs include culture of infective T.b. gambiense trypanosomes in laboratory rodents, necessary for production, and the exposure of non-specific epitopes that may cause cross-reactions. We aimed at identifying peptides that mimic epitopes, called ‘‘mimotopes,’’ specific to T.b. gambiense VSGs and that may replace the native proteins in antibody detection tests

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call