Abstract
BackgroundWith advances in science and technology, the application of artificial intelligence in medicine has significantly progressed. The purpose of this study is to explore whether the k-nearest neighbors (KNN) machine learning method can identify three milling states based on vibration signals: cancellous bone (CCB), ventral cortical bone (VCB), and penetration (PT) in robot-assisted cervical laminectomy.MethodsCervical laminectomies were performed on the cervical segments of eight pigs using a robot. First, the bilateral dorsal cortical bone and part of the CCB were milled with a 5 mm blade and then the bilateral laminae were milled to penetration with a 2 mm blade. During the milling process using the 2 mm blade, the vibration signals were collected by the acceleration sensor, and the harmonic components were extracted using fast Fourier transform. The feature vectors were constructed with vibration signal amplitudes of 0.5, 1.0, and 1.5 kHz and the KNN was then trained by the features vector to predict the milling states.ResultsThe amplitudes of the vibration signals between VCB and PT were statistically different at 0.5, 1.0, and 1.5 kHz (P < 0.05), and the amplitudes of the vibration signals between CCB and VCB were significantly different at 0.5 and 1.5 kHz (P < 0.05). The KNN recognition success rates for the CCB, VCB, and PT were 92%, 98%, and 100%, respectively. A total of 6% and 2% of the CCB cases were identified as VCB and PT, respectively; 2% of VCB cases were identified as PT.ConclusionsThe KNN can distinguish different milling states of a high-speed bur in robot-assisted cervical laminectomy based on vibration signals. This method is feasible for improving the safety of posterior cervical decompression surgery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.