Abstract
Nonclaret disjunctional (Ncd) is a minus end-directed, C-terminal motor protein that is required for spindle assembly and maintenance during meiosis and early mitosis in Drosophila oocytes and early embryos. Ncd has an ATP-independent MT binding site in the N-terminal tail domain, and an ATP-dependent MT binding site in the C-terminal motor domain. The ability of Ncd to cross-link MTs through the action of these binding sites may be important for Ncd function in vivo. To identify the region(s) responsible for ATP-independent MT interactions of Ncd, 12 cDNAs coding various regions of Ncd tail domain were expressed in E. coli as C-terminal fusions to thioredoxin (Trx). Ncd tail fusion proteins (TrxNT) were purified by ion exchange (S-Sepharose) and/or Talon metal affinity chromatography. Purified TrxNT and NT proteins were analyzed in microtubule (MT) cosedimentation and bundling assays to identify which tail proteins were able to bind and bundle MTs. Based on the results of these experiments, all TrxNT and NT proteins that showed MT binding activity also bundled MTs, and there are two ATP-independent MT interaction sites in the tail region: one within amino acids 83-100 that exhibits conformation-independent, high-affinity MT binding activity; and another within amino acids 115-187 that exhibits conformation-dependent, lower affinity MT binding activity. It is possible that both of these MT interacting sites combine in the native protein to form a single MT binding site that allows the Ncd tail to bind cargo MTs in vivo.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.