Abstract

Summer mortality syndrome is one of the most serious issue for Marsupenaeus japonicus aquaculture in China. Since it causes massive economic loss and threatens sustainability of M. japonicus aquaculture industry, thus, there is an urgent desire to reveal the heat stress-host interactions mechanisms that lead to mass mortalities of M. japonicus in hot summer months. MicroRNAs (miRNAs) are small noncoding RNAs that involved in regulation of diverse biological processes, including stress and immune response, and might serve as potential regulators in the heat stress-host interactions. In the present study, miRNAs with heat stress responsive and immune properties were identified and characterized in M. japonicus by small RNA sequencing and bioinformatics analysis. In total, 79 host miRNAs were identified, among which 15 miRNAs were differentially expressed in response to heat stress. Target genes prediction and function annotation revealed that a variety of host cellular processes, such as signal transduction, transcription, anti-stress response, ribosomal biogenesis, lipid metabolism, cytoskeleton, etc, were potentially subject to miRNA-mediated regulation in response to heat stress. Furthermore, a total of 30 host miRNAs that potentially involved in interaction with white spot syndrome virus (WSSV) were obtained via predicting and analyzing the target genes from WSSV. The results showed that a batch of WSSV genes that code for structural proteins and enzymes that are essential for WSSV infection and proliferation, such as envelope proteins, capsid proteins, immediate-early proteins, collagen-like protein, protein kinase, thymidylate synthetase, TATA-box bind protein, etc, were predicted to be targeted by host miRNAs. Several of the host miRNAs with predicted antiviral capacity were down-regulated under heat stress, indicating a repression of host miRNA-mediated antiviral immune response. This study highlighted the essential roles of host miRNAs in the heat stress-host interactions and provided valuable information for further investigation on the mechanism of miRNA-mediated heat stress and immune response of shrimp.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call