Abstract

Distinct miRNA expression patterns may reflect anomalies related to fetal congenital malformations such as spinal bifida (SB). The aim of this preliminary study was to determine the maternal miRNA expression profile of women carrying fetuses with SB. Therefore, six women carrying fetuses with SB and twenty women with euploid healthy fetuses were enrolled in this study. Using NanoString technology, we evaluated the expression level of 798 miRNAs in both plasma and amniotic fluid samples. A downregulation of miR-1253, miR-1290, miR-194-5p, miR-302d-3p, miR-3144-3p, miR-4536-5p, miR-548aa + miR-548t-3p, miR-548ar-5p, miR-548n, miR-590-5p, miR-612, miR-627-5p, miR-644a, and miR-122-5p, and an upregulation of miR-320e, let-7b-5p, miR-23a-3p, miR-873-3p, and miR-30d-5p were identified in maternal amniotic fluid samples in SB when compared to the control group. The target genes of these miRNAs play a predominant role in regulating the synthesis of several biological compounds related to signaling pathways such as those regulating the pluripotency of stem cells. Moreover, the maternal plasma expression of miR-320e was increased in pregnancies with SB, and this marker could serve as a valuable non-invasive screening tool. Our results highlight the SB-specific miRNA signature and the differentially expressed miRNAs that may be involved in SB pathogenesis. Our findings emphasize the role of miRNA as a predictive factor that could potentially be useful in prenatal genetic screening for SB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call