Abstract

MicroRNAs (also called miRNAs) are a group of short non-coding RNA molecules. They play a vital role in the gene expression of transcriptional and post-transcriptional processes. However, abnormality of their expression has been observed in cancer, heart diseases and nervous system disorders. Therefore for basic research and microRNA based therapy, it is imperative to separate real pre-miRNAs from false ones (hairpin sequences similar to pre-miRNA stem loops). Different conservation and machine learning methods have been applied for the identification of miRNAs. However, machine learning algorithms have gained more popularity than conservative based algorithms in terms of sensitivity and overall performance. Due to the avalanche of RNA sequences discovered in a post-genomic age, it is necessary to construct a predictor for the identification of pre-microRNAs in humans. We have developed a predictor called MicroR-Pred in which the RNA sequences are formulated by a hybrid feature vector. The novelty of the new predictor is in the use of the partial least squares technique followed by the Random Forest and SVM (Support Vector Machine) algorithms for dimension reduction and classification. The performance of the MicroR-Pred model is quite promising compared to other state-of-the-art miRNA predictors. It has achieved 88.40% and 93.90% accuracies for RF and SVM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.