Abstract

Staphylococcus aureus causes mastitis in dairy cows, lambs, goats, and skin disorders in pigs and other animals. S. aureus causes localized purulent infections that affect soft tissues, bones, and other organs in humans. Using restriction patterns, the researchers want to isolate and identify methicillin-resistant Staphylococcus aureus (MRSA) strains from cattle and humans. They also hope to assess their genetic relatedness by comparing the mecA1 and mecA2 gene sequence discrepancies. Animals (223 strains) and people have been used to acquire S. aureus strains for study (83). The E-test was used to assess whether or not the bacteria were resistant to methicillin. The mecA1 and mecA2 genes were identified by using pulsed-field gel electrophoresis (PFGE) to analyze DNA restriction patterns. The results were shown. S. aureus strains from animals and men were resistant to methicillin in 32 (14.34 %) and 53 (63.8 %), respectively. PFGE was used to determine the differences between human and veterinary pathology strains. Two strains of bacteria collected from animals were discovered to be identical; nevertheless, microorganisms recovered from humans were found to be significantly similar to the bacteria recovered from animals. Both human and veterinary pathology were implicated in the development of methicillin resistance. The MRSA strains found in humans were much more significant than those found in animals. The strains recovered from animals exhibited a high degree of genetic heterogeneity. Still, the enormous number of indistinguishable bacteria in humans leads one to believe that a dominant clone is present. When it comes to the molecular characterization of MRSA isolates, PFGE might be regarded as the gold standard. Keywords. Animals, Human, MRSA, PFGE, Staphylococcus, mecA genes

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call