Abstract

Long non-coding RNAs (lncRNAs) have been proven to play critical roles in epithelial-mesenchymal transition (EMT) and metastasis of lung cancer. However, the biological functions and related mechanisms of lncRNAs are unclear. In addition, the EMT-based prognosis prediction in lung cancer still lacks investigation. Here, we established the methodology of identifying critical metastasis-related lncRNAs using comprehensive datasets of cancer transcriptome, genome and epigenome, and also provided tools for prognosis prediction in lung cancer. Initially, important mesenchymal marker genes were identified to compose the tumor mesenchymal score, which predicted patient prognosis in lung cancer, especially lung adenocarcinoma (LUAD). The score was also correlated with several crucial biological and physiological processes, such as tumor immune and hypoxia. Based on the score, lung cancer patients was classified into epithelial and mesenchymal subtypes, and lncRNAs which exhibited expressional dysregulation, promotor methylation alteration and copy number variation between the two subtypes in LUAD were identified and underwent further prognostic analyses. Finally, we identified 14 lncRNAs as EMT-related and significant biomarkers in prognosis prediction of LUAD. As validation, lncRNA RBPMS-AS1 was proven to be co-expressed with epithelial biomarkers, suppressive for A549 cell migration, invasion and EMT, and also significantly associated with better outcomes of LUAD patients, suggesting the potential of RBPMS-AS1 to serve as a lncRNA epithelial biomarker in metastasis of LUAD. Based on the identified lncRNAs, an EMT-linked lncRNA prognostic signature was further established. Taken together, our study provides robust predictive tools, potential lncRNA targets and feasible screening strategies for future study of lung cancer metastasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call