Abstract

Amino acid sequences in metal-binding proteins with chelating properties offer exciting applications in biotechnology and medical research. To enhance their application in bioremediation studies, we explicitly aimed to identify specific metal-binding chelating motifs in protein structures for two significant pollutants, such as mercury (Hg2+) and chromium Cr(V1). For this purpose, we have performed an extensive coordination chemistry approach by retrieving Hg2+ and Cr(V1) binding protein structures from the protein database and validated using the B-factor, a term defining uncertainty of the atoms and with occupancy to obtain the best binding motifs. Our analysis revealed that acidic amino acids like aspartic acid, glutamic acid, and basic amino acids such as cysteine and histidine are predominant in coordinating with these metals. The order of preference in Hg2+-bound structures is predicted to be Cys > His > Asp > Glu, and for Cr(V1) is His > Asp > Glu. Examination of the atomic coordinates and their distance from each metal revealed that the sulfur atoms of cysteine showing more preference towards Hg2+coordination with an atomic distance ranging from 1.5 to 2.9Å. Likewise, oxygen atoms of aspartic acid, glutamic acid and nitrogen atoms of histidine are within 2Å of Cr(V1) coordination. Based on these observations, we obtained C-C-C, C-X(2)-C-C-(X)2-C, H-C-H motifs for Hg2+, and D-X(1)-D, H-X(3)-E motif for Cr(V1) to be shared within the coordination space of 3Å. As a future scope, we propose that the identified metal-binding chelating motifs are oligopeptides and can display on the surface of microorganisms such as Escherichia coli and Saccharomyces cerevisiae for effective removal of natural Hg2+ and Cr(V1) through biosorption. Hence, our results will provide the basis for futuristic bioremediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call