Abstract

To define the possible effect of diabetic conditions on megakaryocytes, the long-know precursors of platelets and lately characterized modulator of hematopoietic stem quiescence-activation transition. Megakaryoblastic MEG-01 cell culture and TPO/SCF/IL-3-induced differentiation of human umbilical blood mononuclear cells toward megakaryocytes were used to test effects of glycated bovine serum albumin (BSA-AGEs). The ob/ob mice and streptozotocin-treated mice were used as models of hyperglycemia. MTT was used to measure cell proliferation, FACS for surface marker and cell cycle, and RT-qPCR for the expression of interested genes. Megakaryocytes at different stages in marrow smear were checked under microscope. When added in MEG-01 cultures at 200μg/ml, BSA-AGEs increased proliferation of cells and enhanced mRNA expression of RAGE, VEGFα and PF4 in the cells. None of cell cycle distribution, PMA-induced platelet-like particles production, expression of GATA1/NF-E2/PU-1/IL-6/OPG/PDGF in MEG-01 cells nor TPO/SCF/IL-3 induced umbilical cord blood cells differentiation into megakaryocyte was affected by BSA-AGEs. In the ob/ob diabetic mice, MKs percentages in marrow cells and platelets in peripheral blood were significantly increased compared with control mice. In streptozotocin-induced diabetic mice, however, MKs percentage in marrow cells was decreased though peripheral platelet counts were not altered. Gene expression assay showed that the change in MKs in these two diabetic conditions might be explained by the alteration of GATA1 and NF-E2 expression, respectively. Diabetic condition in animals might exert its influence on hematopoiesis via megakaryocytes-the newly identified modulator of hematopoietic stem cells in bone marrow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call