Abstract

This study presents hybrid particle swarm optimization with quasi-Newton (HPSO-QN), a hybrid optimization method for accurately identifying mechanical parameters in two-mass model (2MM) systems. These systems are commonly used to model and control high-performance electric drive systems with elastic joints, which are prevalent in modern industrial production. The proposed method combines the global exploration capabilities of particle swarm optimization (PSO) with the local exploitation abilities of the quasi-Newton (QN) method to precisely estimate the motor and load inertias, shaft stiffness, and friction coefficients of the 2MM system. By integrating these two optimization techniques, the HPSO-QN method exhibits superior accuracy and performance compared to standard PSO algorithms. Experimental validation using a 2MM system demonstrates the effectiveness of the proposed method in accurately identifying and improving the mechanical parameters of these complex systems. The HPSO-QN method offers significant implications for enhancing the modeling, performance, and stability of 2MM systems and can be extended to other systems with flexible shafts and couplings. This study contributes to the development of accurate and effective parameter identification methods for complex systems, emphasizing the crucial role of precise parameter estimation in achieving optimal control performance and stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.