Abstract
A non-linear dynamical system identification method using Hilbert transform (HT) and empirical mode decomposition (EMD) is proposed. For a single-degree-of-freedom (SDOF) nonlinear system, the Hilbert transform identification method is good at identifying the instantaneous modal parameters (natural frequencies, damping characteristics and their dependencies on a vibration amplitude and frequency). For the multi-degree-of-freedom (MDOF) non-linear uncoupled dynamical systems, the EMD method is attempting for the decomposition of response signals into a collection of mono-components signals, termed intrinsic mode functions (IMFs). Considering the IMFs admit a well-behaved Hilbert transform, the HT identification method has been applied for the identification of nonlinear properties. The numerical simulation of a 2-dof shear-beam building model with nonlinear stiffness illustrated the proposed technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.