Abstract

We tested the hypothesis that a %SmO2 (muscle O2 saturation) slope can distinguish the heavy-severe exercise domain boundary and the highest steady-state metabolic rate. Thirteen participants (5 women) performed a graded exercise test (GXT) to determine peak oxygen consumption (V̇o2peak) and lactate turn point (LTP). On a separate study day, a %SmO2 zero-slope prediction trial included completing 5-min cycling bouts in an estimated heavy domain, at an estimated critical power, and in an estimated severe domain. Linear regression then determined the work rate at the predicted %SmO2 zero-slope, before a fourth 5-min confirmation trial. Two separate validation study days included confirmed steady-state (heavy domain) and nonsteady-state (severe domain) constant work rate trials. The power at the predicted %SmO2 zero-slope was 204 ± 36 W and occurred at a %SmO2 slope of 0.7 ± 1.4%/min (P = 0.12 relative to zero). There was no difference between the power at LTP (via GXT) and the predicted %SmO2 zero-slope linked power (P = 0.74). From validation study days, the %SmO2 slope was 0.32 ± 0.73%/min during confirmed heavy-domain constant work rate exercise and -0.75 ± 1.94%/min during confirmed severe-domain exercise (P < 0.05). The %SmO2 zero-slope consistently delineated steady state from nonsteady-state metabolic parameters (V̇o2 and blood lactate) and the heavy-severe domain boundary. Our data suggest the %SmO2 slope can identify the highest steady-state metabolic rate and the physiological boundary between the heavy-severe domain, independent of work rate.NEW & NOTEWORTHY Muscle O2 saturation (%SmO2) rate can be used to not only identify sustainable from unsustainable exercise intensities but also delineate the transition from heavy to severe exercise domains. This report is the first to identify, and then validate, that the highest steady-state metabolic rate is related to a zero-slope muscle O2 saturation and is therefore dependent on muscle oxygen supply-demand balance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.