Abstract

This article deals with the prediction of parameters in an annular hyperbolic fin with temperature-dependent thermal conductivity. Three parameters such as thermal conductivity, variable conductivity coefficient and the surface heat transfer coefficient have been predicted for satisfying a prescribed temperature distribution on the surface of fin. This is achieved by a hybrid differential evolution-nonlinear programming optimization method. The effect of random measurement errors is also considered. It is observed from the present inverse analysis that many feasible materials exist satisfying the given temperature distribution, thereby providing engineering flexibility in selecting any material from the available choices. For a given material, this is possible by regulating the surface heat transfer coefficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.