Abstract

A reliable prediction of ductile failure in metals is still a wide-open matter of research. Several models are available in the literature, ranging from empirical criteria, porosity-based models and continuum damage mechanics (CDM). One major issue is the accurate identification of parameters which describe material behavior. For some damage models, parameter identification is more or less straightforward, being possible to perform experiments for their evaluation. For the others, direct calibration from laboratory tests is not possible, so that the approach of inverse methods is required for a proper identification. In material model calibration, the inverse approach consists in a non-linear iterative fitting of a parameter-dependent load–displacement curve (coming from a FEM simulation) on the experimental specimen response. The test is usually a tensile test on a round-notched cylindrical bar. The present paper shows a novel inverse procedure aimed to estimate the material parameters of the Gurson–Tvergaard–Needleman (GTN) porosity-based plastic damage model by means of experimental data collected using image analysis. The use of digital image processing allows to substitute the load–displacement curve with other global quantities resulting from the measuring of specimen profile during loading. The advantage of this analysis is that more data are available for calibration thus allowing a greater level of confidence and accuracy in model parameter evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.