Abstract

Hepatocyte growth factor (HGF), a heterodimer composed of the α-chain and β-chain, exerts multifunctional actions for tissue repair and homeostasis via its receptor, MET. HGF is cleaved by proteases secreted from inflammatory cells, and NK4 and β-chain remnant (HGF-β) are generated. Here, we provide evidence that HGF-β binds to a new receptor other than MET for promoting a host cell clearance system. By an affinity cross-linking, radiolabeled HGF-β was bound to liver non-parenchymal cells, particularly to Kupffer cells and sinusoidal endothelial cells, but not to parenchymal hepatocytes. The cross-linked complex was immunoprecipitated by anti-HGF antibody, but not anti-MET antibody, implying that HGF-β binds to non-parenchymal cells at a site distinct from MET. Mass spectrometric detection of the ligand receptor complex revealed that the binding site of HGF-β was the mannose receptor (MR). Actually, an ectopic expression of MR in COS-7 cells, which express no endogenous MR or MET, enabled HGF-β to bind these cells at a K(D) of 89 nM, demonstrating that MR is the new receptor for HGF-β. Interaction of HGF-β and MR was diminished by EGTA, and by an enzymatic digestion of HGF-β sugar chains, suggesting that MR may recognize the glycosylation site(s) of HGF-β in a Ca(2+)-dependent fashion. Notably, HGF-β, but not other MR ligands, enhanced the ingestion of latex beads, or of apoptotic neutrophils, by Kupffer cells, possibly via an F-actin-dependent pathway. Thus, the HGF-β·MR complex may provide a new pathway for the enhancement of cell clearance systems, which is associated with resolution of inflammation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.