Abstract

In this paper, we propose a statistical approach for smartphone malware detection. A set of features such as hardware, permission, application components, filtered intents, opcodes and strings are extracted from the samples to form a vector space model. Feature selection methods such as Entropy based Category Coverage Difference (ECCD) and Weighted Mutual Information (WI) are used to choose the prominent features. The performance of the system is analyzed using classifiers, Random Forest, Rotation Forest and Support Vector Machine (SVM). The system was evaluated on individual models as well as Meta feature space model for both malware and benign features. It was observed that the meta feature space model with malware features provide the best results for both feature selection. For ECCD, Random Forest classifier performs better [Dataset 1—0.972, Dataset 2—0.976 and Dataset 3—0.969] whereas in the case of WI, SVM gives highest F-measure [Dataset 1—0.993, Dataset 2—0.994 and Dataset 3—0.992]. From the overall analysis on the system, we conclude that the malware model outperforms it’s benign counterpart and also that WI is a better feature selection technique compared to ECCD.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.