Abstract

During infection with the Lyme arthritis (LA) pathogen Borrelia burgdorferi, T-cell responses to both host and pathogen are dysregulated, resulting in chronic infection and frequent development of autoimmunity. To assess CD4+ T-cell epitopes presented during development of LA, we used an unbiased, immunopeptidomics approach to characterize the major histocompatibility complex (MHC) class II immunopeptidome in B burgdorferi-infected C57BL/6 (B6) mice, which develop mild, self-limiting LA, and infected B6 Il10-/- mice, which develop severe, persistent LA at 0, 4, and 16 weeks postinfection (22-23 mice per group). Peptides derived from proteins involved in adaptive T- and B-cell responses and cholesterol metabolism, including human Lyme autoantigen apolipoprotein B-100 (apoB-100), were enriched in infected Il10-/- mice; whereas peptides derived from proteins involved in neutrophil extracellular net formation were enriched in infected B6 mice. Presentation of apoB-100 peptides showed evidence of epitope expansion during infection. Of several identified B burgdorferi peptides, only 1, a methyl-accepting chemotaxis protein peptide Mcp4442-462, was immunogenic. ApoB-100, a human Lyme autoantigen, undergoes marked epitope expansion during LA development. The paucity of immunogenic B burgdorferi epitopes supports previous findings suggesting CD4+ T-cell responses are suppressed in murine LA.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.