Abstract

In paleomagnetic and environmental magnetic studies the magnetomineralogical identification is usually based on a set of rock magnetic parameters, complemented by crystallographic and chemical information retrieved from X-ray diffraction (XRD), (electron) microscopy or energy dispersive spectroscopy (EDS) of selected samples. While very useful, each of these supplementary techniques has its limitations when applied to natural sample material which are related to low particle concentrations (down to the ppm range in marine sediments) and very fine grain sizes (down to the nm scale). Therefore, meaningful application of such techniques depends on sample quality. Electron backscatter diffraction (EBSD) of individual grains in scanning electron microscopy (SEM) enables mineralogical identification of grains down to ∼0.2 micrometer and is particularly powerful when combined with EDS. In this study, we show the merits of EBSD for rock magnetic investigations by analyzing titanomagnetites and hemoilmenites of various compositions and submicron lamella of titanomagnetite-hemoilmenite intergrowths. Such particles often occur in natural marine sediments where EDS often has a semi-quantitative character and compositionally similar intergrowths may be difficult to distinguish. With the mineralogical information provided by EBSD unambiguous identification of spinel-type and trigonal oxides is obtained. Optimal EBSD patterns are gathered from smooth, polished surfaces, but here we show that interpretable EBSD patterns can be obtained directly from the surface of unconsolidated, so called 'non-embedded' particles from marine sediments. This information enhances the interpretative value of rock magnetic parameters. © 2007 The Authors Journal compilation © 2007 RAS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.