Abstract
Rhodococcus equi causes severe pneumonia in foals and is most often recognized in people as an opportunistic pathogen. Longitudinal studies examining antimicrobial-resistant R. equi from environmental samples are lacking. We hypothesized that antimicrobial-resistant R. equi would be detectable in the ground (pasture soil or stall bedding) and air at breeding farms with previous documentation of foals infected with resistant isolates, and that concentrations of resistant isolates would increase over time during the foaling season. In this prospective cohort study, ground and air samples were collected from stalls and paddocks in January, March, May and July of 2018 at 10 horse-breeding farms with history of foal pneumonia attributed to macrolide- or Rifampicin-resistant R. equi. Environmental samples were cultured in the presence and absence of macrolides and Rifampicin to select for resistant organisms. Data were analyzed with linear mixed-effects and Hurdle models. Concentrations of total R. equi in bedding or air of stalls were significantly (P < 0.05) higher in January than other months. The proportion of resistant R. equi in soil samples from paddocks was significantly (P < 0.05) higher than stall bedding during all months. For each month, air samples from paddocks had a significantly (P < 0.05) higher proportion of resistant isolates than those from stalls. Fifty-five percent of resistant soil isolates and 34% of resistant air isolates were considered virulent by identification of the vapA gene. Concentrations of resistant R. equi isolates did not increase over time during the foaling season. Antimicrobial-resistant R. equi can persist in the environment at farms with a history of pneumonia caused by resistant R. equi infections, and exposure to resistant isolates in paddocks and stalls appears stable during the foaling season. Resistant isolates in the environment not only pose a risk for disease but also can serve as a repository for dissemination of resistance genes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.