Abstract

The beneficial effects provided by chitosan oligosaccharides (COS) make them of interest in medical research. The monomers that constitute COS confer distinct properties, so controlling COS composition during their production is significant. In this work, we degraded chitin and chitosan polymers and identified low molecular weight products such as COS that formed, using electrospray ionization time-of-flight mass spectrometry. Our results show that hydrochloric acid, hydrogen peroxide, and nitrous acid generate distinct products from chitin and chitosan. Hydrochloric acid degrades chitin and chitosan to produce glucosamine (GlcN) monomers and oligomers. Hydrogen peroxide degrades chitosan to produce GlcN and N-acetyl-d-glucosamine (GlcNAc) monomers and oligomers, and nitrous acid degrades chitosan to produce 2,5-anhydro- d-mannose. Our studies show that COS composition is dictated by both the degradation protocol and the starting polymer. Additionally, our results enable selection of degradation protocols based on their ability to degrade chitin and chitosan and facilitate the production of COS with desired compositions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call