Abstract

A family of specific guanine nucleotide-binding proteins in Dunaliella salina was studied. Polypeptides of different subcellular fractions were separated by electrophoresis and transferred to nitrocellulose or Immobilon membranes. Incubation of the transfer blots with [(35)S]GTPgammaS or [alpha-(32)P]GTP showed no evidence for GTP-binding proteins in the chloroplast and cytosol fractions. However, two GTP-binding proteins with molecular masses of 28 and 30 kilodaltons were present in the plasma membrane and microsomal fractions. An additional 29 kilodalton GTP-binding protein was detected in the plasma membrane. The mitochondrial fraction contained significant amounts of only the 28 kilodalton GTP-binding protein. Binding of [(32)P]GTP to the protein blots was completely prevented by 10 micromolar GTP or guanosine 5'-O-(2-thiodiphosphate) (added in 3 x 10(4)-fold excess), whereas ATP or CTP had no effect on the binding. The 28 kilodalton GTP-binding protein was recognized by polyclonal antibodies to the ras-related YPT1 protein of yeast but not by the anti-ras Y13-259 monoclonal antibody. GTP-binding proteins present in the microsomal fraction could not be solubilized by incubation of microsomes with 1 molar NaCl or 0.2 molar Na(2)CO(3), but some GTP-binding activity was solubilized when microsomes were treated with 6 molar urea. These results indicate that D. salina GTP-binding proteins are tightly associated with the membranes. The covalent attachment of fatty acids to these proteins was also investigated. Electrophoresis followed by fluorography of delipidated microsomal proteins extracted from [(3)H]myristic acid-labeled cells showed an intense labeling of a 28 kilodalton protein. We conclude that D. salina contains proteins resembling the ras-related proteins found in animal cells and higher plants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.