Abstract

Tropospheric ozone pollution has been continuously worsening in China during the past decade. Identification of long-term evolution of ozone sensitivity to precursors is essential to evaluating the impact of emission reduction measures on ozone pollution. Traditional observation-based model and 3-d numerical model are not suitable for analyzing long-term variation of ozone sensitivity to precursors. In this study, by transforming the conventional ozone isopleth plot into a VOCR isopleth plot in the functional space of NOx and ozone concentrations, we developed a novel approach to identify ozone sensitivity to precursors by simply using long-term monitoring data of ozone, NOx and temperature. This approach estimated ozone formation regimes (OFR) by ozone sensitivity to NOx and temperature separately, and the convergence of OFR serves as a way of mutual verification. We found that ozone formation was generally in the VOCR-limited or transitional regime in Shanghai, the largest metropolitan area in China. However, OFR was shifted to NOx-limited at Pudong station during 2017–19 due much to the stringent NOx emission control. OFR was also shifted to NOx-limited along with the increasing temperature. When temperature was over 30 °C, Shanghai was mostly in a NOx-limited OFR. This highlights that the NOx emission control measures need to be strengthened to reduce peak ozone levels more efficiently. Jinshan station exhibited a different trend with OFR shifted to VOCR-limited in 2017–19, which proved the effectiveness of VOCs emission control on petrochemical sector. However, OFR was shifted to NOx-limited when temperature was over 30 °C, suggesting more stringent VOCs emissions control should be targeted on days with higher temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.