Abstract

Long non-coding RNAs (lncRNAs) are a recently discovered group of non-coding RNAs that play a crucial role in the regulation of various human diseases, especially in the study of nervous system diseases which has garnered significant attention. However, there is limited knowledge on the identification and function of lncRNAs in hepatolenticular degeneration (HLD). The objective of this study was to identify novel lncRNAs and determine their involvement in the networks associated with HLD. We conducted a comprehensive analysis of RNA sequencing (RNA-seq) data, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and computational biology to identify novel lncRNAs and explore their potential mechanisms in HLD. We identified 212 differently expressed lncRNAs, with 98 upregulated and 114 downregulated. Additionally, 32 differently expressed mRNAs were found, with 15 upregulated and 17 downregulated. We obtained a total of 1131 pairs of co-expressed lncRNAs and mRNAs by Pearson correlation test and prediction and annotation of the lncRNA-targeted miRNA-mRNA network. The differential lncRNAs identified in this study were found to be involved in various biological functions and signaling pathways. These include translational initiation, motor learning, locomotors behavior, dioxygenase activity, integral component of postsynaptic membrane, neuroactive ligand-receptor interaction, nuclear factor-kappa B (NF-κB) signaling pathway, cholinergic synapse, sphingolipid signaling pathway, and Parkinson's disease signaling pathway, as revealed by the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Six lncRNAs, including XR_001782921.1 (P < 0.01), XR_ 001780581.1 (P < 0.01), ENSMUST_00000207119 (P < 0.01), XR_865512.2 (P < 0.01), TCONS_00005916 (P < 0.01), and TCONS_00020683 (P < 0.01), showed significant differences in expression levels between the model group and normal group by RT-qPCR. Among these, four lncRNAs (TCONS_00020683, XR_865512.2, XR_001780581.1, and ENSMUST00000207119) displayed a high degree of conservation. This study provides a unique perspective for the pathogenesis and therapy of HLD by constructing the lncRNA-miRNA-mRNA network. This insight provides a foundation for future exploration in this field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call