Abstract
Background Long noncoding RNAs (lncRNAs) play a crucial role in varieties of biological processes. This study is aimed at investigating meniscal degeneration-specific lncRNAs and mRNAs and their related networks in knee osteoarthritis (KOA). Methods The dataset GSE98918, which included 24 meniscus samples and related clinical data, was downloaded from the Gene Expression Omnibus database. The differentially expressed lncRNAs and mRNAs in the meniscus between KOA and control groups were identified. Based on the enriched differentially expressed lncRNAs and mRNAs, we constructed the coexpression network using WGCNA (weighted correlation network analysis) and identified the critical module related to KOA. For mRNAs in the key module, gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were carried out using the DAVID database. A competing endogenous RNA network (ceRNA) based on the screened mRNAs, lncRNAs, and related miRNAs was constructed to reveal presumptive biomarkers further. Finally, the hub lncRNAs and mRNAs were screened, and the diagnostic value was evaluated using a receiver operating characteristic (ROC) curve. Hub mRNAs were validated using the dataset GSE113825. Results We screened 208 significantly differentially expressed lncRNAs and mRNAs in menisci between the KOA and non-KOA samples, which were enriched in sixteen modules using WGCNA, especially the green module. Coexpression network based on the enriched differentially expressed lncRNAs and mRNAs in the green module uncovered 5 lncRNAs and 56 mRNAs. The lncRNA-miRNA-mRNA ceRNA network revealed that lnc-HLA-DQA1-5, lnc-RP11-127H5.1.1-1, lnc-RTN2-1, IGFBP4 (insulin-like growth factor binding protein 4), and KLF2 (Kruppel-like factor 2) were significantly correlated with the meniscus degeneration of KOA. ROC curve analysis revealed that these hub lncRNAs and mRNAs showed excellent diagnostic value for KOA. Conclusions These hub lncRNAs and mRNAs were potential prognostic biomarkers for the meniscus degeneration of KOA. Further studies are required to validate these new biomarkers and better understand the pathological process of the meniscus degeneration of KOA.
Highlights
OA is one of the prevalent causes of worldwide disability [1], and its incidence is climbing owing to an aging population and increasing obesity [2]; knee osteoarthritis (KOA) accounts for more than 80% [3]
Gene symbols were reannotated into a complete human genome (GRCh38), and the expression levels of Long noncoding RNAs (lncRNAs) and protein-coding mRNAs were obtained
A total of 18428 protein-coding genes and 10988 lncRNAs were obtained after reannotation
Summary
OA is one of the prevalent causes of worldwide disability [1], and its incidence is climbing owing to an aging population and increasing obesity [2]; KOA accounts for more than 80% [3]. Based on the enriched differentially expressed lncRNAs and mRNAs, we constructed the coexpression network using WGCNA (weighted correlation network analysis) and identified the critical module related to KOA. A competing endogenous RNA network (ceRNA) based on the screened mRNAs, lncRNAs, and related miRNAs was constructed to reveal presumptive biomarkers further. We screened 208 significantly differentially expressed lncRNAs and mRNAs in menisci between the KOA and non-KOA samples, which were enriched in sixteen modules using WGCNA, especially the green module. Coexpression network based on the enriched differentially expressed lncRNAs and mRNAs in the green module uncovered 5 lncRNAs and 56 mRNAs. The lncRNA-miRNA-mRNA ceRNA network revealed that lnc-HLA-DQA1-5, lncRP11-127H5.1.1-1, lnc-RTN2-1, IGFBP4 (insulin-like growth factor binding protein 4), and KLF2 (Kruppel-like factor 2) were significantly correlated with the meniscus degeneration of KOA. These hub lncRNAs and mRNAs were potential prognostic biomarkers for the meniscus degeneration of KOA.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.