Abstract

Raman spectroscopy has been used to identify bacterial strains, bacterial components, such as protein and DNA bases, and the ratio of live to dead bacteria before and after exposure to ultraviolet (UV) radiation. New vibrational bands and changes in their intensity as a function of UV irradiation time have been recorded by high resolution Raman spectroscopy which made it possible to determine the mechanism of the UV inactivation of Escherichia coli (E. coli) , Serratia marcescens (S. marcescens) , and Micrococcus luteus (M. luteus) bacteria in saline solutions. We have also employed a novel, new, handheld spectrometer capable of recording, in situ , within minutes, the absorption, fluorescence, synchronous fluorescence, and Raman spectra of bacteria and other biological species and large molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.