Abstract

A large number of macrophage-derived foam cells stores excessive neutral lipids in intracellular droplets, and plays a major role during the development of atherosclerosis. The formation and catabolism of intracellular lipid droplets (LDs) are regulated by LD-associated proteins, a group of proteins which are located on the surface of LDs and regulate the formation, morphology and lipolysis of LDs. In order to illustrate the function of LD-associated proteins during the process of atherosclerosis, the foam cell model is induced by oxidized low-density lipoprotein (ox-LDL) in macrophages originated from the THP-1 cell line, and cDNA microarrays are used to monitor the gene expression profiles of LD-associated proteins. Gene expression data show that 2% of changed genes are lipid binding genes during the transformation of foam cells. The major candidate genes, the cell death-inducing DFF45-like effector (CIDE) family and Perilipin, Adipophilin, and TIP47 (PAT) family, have different alterations during the formation of foam cells. CIDEB, CIDEC, Adipophilin, S3-12 and LSDP5 were up-regulated, while TIP47 was down-regulated. There was no significant change in CIDEA and Perilipin. These results were confirmed by real-time PCR and immunoblotting. This study presents a comprehensive analysis of the gene expression of LD-associated proteins during the differentiation of human foam cells, which may play an important role in the process of atherosclerosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call